ROTATIONAL SPECTRA, HYPERFINE STRUCTURE, AND NUCLEAR MAGNETIC SHIELDING TENSORS OF $^{33}\mathrm{SO}_2$ AND $\mathrm{SO}^{17}\mathrm{O}$

HOLGER S. P. MÜLLER, GISBERT WINNEWISSER, I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany; EDWARD A. COHEN, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, U. S. A.; MARTIN SCHÄFER, BETHANY BRUPBACHER—GATEHOUSE, ALFRED BAUDER, Laboratorium für Physikalische Chemie, ETH Zentrum, CH-8092 Zürich, Switzerland.

Precise frequencies for the 1_{11} – 2_{02} transition of $^{33}\mathrm{SO}_2$ and $\mathrm{SO}^{17}\mathrm{O}$ in natural isotopic abundance have been obtained by microwave Fourier transform spectroscopy to yield improved hyperfine constants. Nuclear spin-rotation coupling constants have been determined for $^{33}\mathrm{SO}_2$ for the first time. The same transition was also recorded for $^{32}\mathrm{SO}_2$, $^{34}\mathrm{SO}_2$, $^{34}\mathrm{SO}_2$, and vibrationally excited ($v_2=1$) $^{32}\mathrm{SO}_2$, in part to allow for a comparison with previously published precise data.

 SO_2 is an important interstellar molecule. Continuing our investigations of the rotational spectra of isotopomers of SO_2 , a,b selected $SO^{17}O$ transitions have been studied in the submillimeter wave region in order to improve and newly determine rotational and centrifugal distortion constants. At present, these measurements cover 540 - 840 GHz with J and K_a up to 63 and 16, respectively. For $^{33}SO_2$, some transitions with large hyperfine splitting were recorded in the millimeter wave region.

The spin-rotation constants have been used to derive nuclear magnetic shielding parameters which were compared with NMR shifts, data from quantum chemical calculations, and results for the isoelectronic O₃ molecule.

^aE. Klisch, P. Schilke, S. P. Belov, and G. Winnewisser, J. Mol. Spectrosc. 186 (1997) 314.

^bS. P. Belov, M. Y. Tretyakov, I. N. Kozin, E. Klisch, G. Winnewisser, W. J. Lafferty, and J.-M. Flaud, *J. Mol. Spectrosc.* **191** (1998) 17.